GN-225

V Semester B.Sc. Examination, December - 2019
 (CBCS) $(\mathrm{F}+\mathrm{R})$ (2016-17 and Onwards)
 CHEMISTRY
 Physical Chemistry Paper - VI

Time : 3 Hours
Instructions : (i) The question paper has two parts. Answer both the parts.
(ii) Draw diagrams and write chemical equations wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries two marks.

1. What is Transport number of ion ?
2. What are concentration cells ?
3. Mention two advantages of conductometric titration.
4. The specific conductance of 0.1 M solution of an electrolyte at a given temperature is $0.5092 \Omega^{-1} \mathrm{~m}^{-1}$. Calculate its molar conductance.
5. Give two limitations of standard hydrogen electrode.
6. Write clausius-Mosotti equation and explain the terms involved in it.
7. Write the selection rule for rotational and vibrational transitions.
8. What is solubility product of a sparingly soluble salt ?
9. Name the region of electromagnetic spectrum in which rotational spectrum
and vibrational spectrum occur.
10. State Hooke's Law.
11. What are inelastic collisions ?
12. Give any two applications of polarography.

PART - B
Answer any nine of the following questions. Each question carries six marks.
13. (a) Describe the principle involved in the conductometric titration of strong acid versus weak base graphically.
(b) The Molar conductance of infinite dilution for $\mathrm{NaCl}, \mathrm{NH}_{4} \mathrm{Cl}$ and NaOH are $12.6 \times 10^{-3}, 15.0 \times 10^{-3}$ and $24.81 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$ respectively. Calculate the λ_{∞} of $\mathrm{NH}_{4} \mathrm{OH}$.
14. (a) State Kohlrausch's Law. Describe the determination of solubility of AgCl from conductance measurement.
(b) Define standard electrode potential.
15. (a) Mention any four limitations of Arrhenius theory.
(b) The transport number of NO_{3}^{-}ion at infinite dilution in AgNO_{3} is 0.52 . The molar conductivity of AgNO_{3} at infinite dilution is $12.0 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$. Calculate the ionic conductance of NO_{3}^{-}ion at infinite dilution.
16. (a) Describe the determination of pH of a solution using quinhydrone electrode.
(b) What is liquid junction potential ? How it is eliminated ?
17. (a) The emf of a cell
17. (a) The emf of a cell $\quad \mathrm{Ag}|\mathrm{AgCl}(\mathrm{s}), 0.01 \mathrm{M} \mathrm{KCl}|\left|0.01 \mathrm{M} \mathrm{AgNO}_{3}\right| \mathrm{Ag}$ was found to be 0.455 V at 298 K. Calculate the solubility product and solubility of AgCl .
(b) Write Nernst equation for single electrode potential and explain the (b) Write
18. (a) Derive Henderson - Hasselbakh equation for acidic buffer. 4+2
18. (a) Derive Henderson - Hasselbakh equation
(b) Explain why phenolphthalein is not a suitable indicator in the titration ox ammonium hydroxide and hydrochloric acid.
19. (a) Define :
(i) Pyroelectricity
(ii) Piezoelectricity
(iii) Peltier effect
(iv) Seebeck effect
(b) Mention any two applications of semiconductors.
20. (a) What are paramagnetic and diamagnetic substances ? Give two examples for each type.
(b) State Born-Oppenheimer approximation.
21. (a) The separation of rotational spectral lines occurred $332 \mathrm{~m}^{-1}$ for NO molecule. Calculate the internuclear distance. Reduced mass of $\mathrm{NO}=1.24 \times 10^{-26} \mathrm{~kg} \quad \mathrm{~h}=6.626 \times 10^{-34} \mathrm{Js}$ $\mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1}$.
(b) H_{2} does not show rotation spectrum while HCl shows rotation spectrum. Give reason.
22. (a) Derive an expression for vibrational energy levels of SHO (Simple Harmonic Oscillator).
(b) Define zero point energy of a vibrating molecule. Give its equation.
23. (a) Write any four advantages of Raman spectroscopy over IR spectroscopy.
(b) The reduced mass of a diatomic molecule is $2.5 \times 10^{-26} \mathrm{~kg}$ and its vibrational frequency is $29 \times 10^{4} \mathrm{~m}^{-1}$. Calculate its force constant.
24. (a) Explain in brief : stokes and antistokes lines.
(b) Give any two applications of Raman spectroscopy.
25. (a) Define the terms : (i) Diffusion current $4+2$
(b) Write two advantages of using Dropping Mercury Electrode (DME).

